Project: When was the CMB generated?

The purpose of this project is to apply the thermal physics to the evolution of the universe to obtain the temperature T_{dec}^{1} when the cosmic microwave background (CMB) was generated in the early universe. Here we will choose a simple approach to find T_{dec} . Adopting the natural unit $c = \hbar = k_B = 1$ turns out useful. Follow the steps below to find your result!

- 1. Number densities of particles Assume for simplicity (and in fact it's a good approximation) that there are photons γ , electrons e and protons p. The relevant equilibrium process with these particle contents before the CMB is $p + e \leftrightarrow {}^{1}H + \gamma$, with ${}^{1}H$ being a neutral hydrogen atom. Use the phase space distribution functions in kinetic equilibrium of each particle $f_i(\mathbf{p})$ ($i = \gamma$, e and p) to find the number density n_i . Bear in mind the following:
 - Of course, electrons and protons are fermions while photons are bosons. Use different distribution functions for them.
 - Since photons are involved, the energy should be regarded as relativistic, i.e. $E = \sqrt{m^2 + p^2}$ where $p = |\mathbf{p}|$.
 - For electrons and protons, assume that the rest masses are much larger than temperature.
- 2. Saha equation Now we proceed to write down the relation between the temperature and the "ionization fraction", $X_e \equiv n_e/(n_e + n_{^1H}) = n_p/(n_p + n_{^1H})$ where the 2nd equality follows from the neutrality of the universe, $n_e = n_p$. Combining the number densities n_e , n_p and $n_{^1H}$, we can eliminate the chemical potentials. Denoting $B \equiv m_e + m_p m_{^1H} \approx 13.6$ eV being the binding energy of hydrogen, find the following relation:

$$\frac{1-X_e}{X_e^2} \approx \eta \frac{4\sqrt{2}\zeta(3)}{\sqrt{\pi}} \left(\frac{T}{m_e}\right)^{3/2} e^{B/T} \,.$$

This equation is called the Saha equation. Here, $\eta \equiv (n_p + n_{^1H})/n_{\gamma}$ is called the baryon-to-photon ratio² and $\zeta(s)$ is the Riemann zeta function. Remember:

- We assume the universe is in thermal equilibrium. This means for the whole process $p + e \leftrightarrow H + \gamma$ the chemical potential vanishes.
- Properly take into account the number of spin states g_i . For example, $g_{^1H} = 4$. Can you guess why?
- 3. Decoupling temperature Given the Saha equation, we can see how X_e behaves as a function of the temperature. How does X_e change as T becomes smaller? If we define recombination as the point when 90% of the electrons have combined with protons, what is the corresponding decoupling temperature T_{dec} with $\eta \approx 6.2 \times 10^{-10}$? Do you think the value of T_{dec} you find is natural? How old is the universe at that time?
 - For the last question, use the Friedmann equation in the matter dominated era.

¹The subscript "dec" stands for decoupling since, as will be explained during the lecture, the CMB was generated when the photons and the free electrons were decoupled.

 $^{^{2}}$ In fact, about 25% of protons exist in the form of helium nuclei.